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LEITER TO THE EDITOR 

Self-avoiding walks that cross a square 

Theodore W Burkhardtt and Ihnsouk Guimt. 
t Department of Physics, Temple University, Philadelphia, PA 19122, USA 
i Deparfment of Physics, Villanova University, Villanova, PA 19085, USA 

Received 16 July 1991 

Abstract. We consider self-avoiding walks that traverse an L x L square lattice. Whittington 
and Guttmann haw proved the existence of a phase transition in the infinite-L limit at a 
critical value of the step fugacity. We make several finite-sire scaling predictions for the 
critical region, using the relation between self-avoiding walks and the N-vector model of 
magnetism. Adsorbing as well as non-adsorbing boundaries are considered. The predictions 
are in good agreement with numerical data for LS9. 

Whittington and Guttmann [l] have recently studied some of the properties of the 
family of self-avoiding walks that cross a finite square lattice. The walks begin at (0,O) 
and end at (L ,  L )  without leaving the square with corners at (O,O), (0, L) ,  ( L ,  0), and 
(L, L).  The generating function is defined by 

C L ( X )  = E C"(L)X" ( 1 )  

where c.(L) is the number of such walks with n steps, and x is the step fugacity. 

CL( l )  increases exponentially with L2 in the large-L limit, i.e. 
Whittington and Guttmann demonstrated rigorously that the total number of walks 

(2) 

On the basis of numerical data for L s 6  they estimated A = 1.756*Oo.01. They also 
proved that the quantity IimL+- L-'In C L ( x )  is a non-analytic function of x, i.e. there 
is a phase transition. Below and above the critical fugacity x*, the average number of 
steps ( n ) L x  = J In CL(x)/J In x varies asymptotically as 

lim L-2 In cL(l) = In A. 
L-m 

for large L. From numerical data and a rigorous bound they found that x* is between 
0.4 and the inverse connectivity [Z] 

(4) p-' = 0.379 052 28+0.000 000 14 

respectively, with a strong possibility that x* = p-' .  
In this letter the transition is further explored using the equivalence [3] between 

self-avoiding walks and the N-vector model of magnetism in the limit N + O .  Several 
predictions for the transition in the system of walks are obtained from finite-size scaling 
theory [4-61 for magnetic systems. The predictions are then compared with numerical 
data for Ls9. 
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According to [3] the generating function of the self-avoiding walks defined in 
equation (1) can be expressed as 

C,(x) = lim N-'(S(O, 0) . S ( L ,  L)). ( 5 )  

The quantity on the right denotes the correlation function of spins on opposite comers 
of a square of ( L +  I ) 2  classical N-component spins, normalized so that S . S  = N, with 
nearest-neighbour interactions. Since T + T, in the magnetic system corresponds to 
x +  fiL' in the system of self-avoiding walks [3], the result x* = p- ' ,  suggested as a 
strong possibility in [I], follows directly from this correspondence. 

N - 0  

Table I .  Total number of walks C,.(1) between opposite corners ofthe square and between 
the midpoints of  opposite edges. 

L (O,O)+(L,L) (O ,L IZ )+ (L .L /2 )  ( O , ( L ~ l ) l 2 ) ~ ( L , ~ L + 1 ~ / 2 )  

I 2 2 
2 12 9 
3 184 112 
4 8 512 3915 
5 I262816  574068 
6 575 780 564 247 484 661 
7 789360053252 338670045504 
8 3 266598486981642 I378292310954861 
9 41 044208702632496804 17160258555040648616 

Figure 1. Dependence of CL(I ) ' lL*  (circles) and A\:O'(l)"L (crosses) on L-', with L =  
2 . 3 , .  . , , 9 .  The upper and lower sequences of circles correspond to walks between opposite 
comers and the midpoints of apposite edges, respectively. The filled and empty points of 
the lower sequence correspond to even and odd L. 
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FigurrZ DependenceafinC,(x*)anln L,with L = 1 , 2 ,  . . . ,  9,forwalksbetweenopposite 
comers (lower points) and walks between the midpoints of opposite edger (upper paints). 
The filled and empty upper points correspond IO even and odd L, respectively. The lower 
and upper broken lines have slopes -f and -3.  

Making a standard finite-size scaling ansatz [4-6] for the spin-spin correlation 
function in equation (9, we obtain the expression 

C , ( x ) =  L - ~ = f [ L " " ( x * - x ) l  ( 5 )  

which is expected to hold in the critical region L>> 1, Ix*-xI<< x* .  Since there is no 
phase transition for finite L, the function f and its derivatives are assumed to exist. 
In equation (6), U is the standard exponent that characterizes both the correlation 
length of the magnetic system and the radius of gyration of the polymer [3]. The 
quantity T~ is the corner exponent [ 7 ]  of the magnetization. Equation (6) is not limited 
to the square geometry, but holds for any system with characteristic size L in general 
dimension d. 

For d = 2 and for a 90" corner, 

" = a  (7a) 

d ~ / 2 ) = 2 T I l = ; .  ( 7 b )  
The value for qc follows from Cardy's [ 7 ]  result q = for the surface exponent that 
characterizes the decay of spin correlations parallel to the boundary in the semi-infinite 
geometry and the relation [ 7 ]  

for the corner exponent in a wedge with angle 0, 
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Figure 3. Dependence of In (n),x. on In L, with L = I ,  2 , .  . . , 9 ,  for walks between opposite 
corners (upper points, left vertical axis) and walks between the midpoints of opposite 
edges (lower points, right venical axis). The filled and empty lower points correspond to 
even and odd L, respectively. Both broken lines have slope 4 

In addition to the walks (0,O) tn (L, L)  between opposite corners of the square, 
we have considered walks between the midpoints of opposite edges, i.e. (0, L/2) to 
(L ,  L / 2 )  for L even. For L odd we approximate the midpoints by (0, ( L - l ) / 2 )  and 
(L, (L+1)/2).  In both cases the functional form (6) applies. According to equation 
(X), for walks between the midpoints of opposite edges the appropriate corner exponent 
in (6) is q,(r)=a instead of q c ( m / 2 ) = t .  

From equation (6) and its first two derivatives with respect to x, one obtains the 
predictions 

C,(X*)-- L - T e  

for large L, which complement the results ( l ) ,  (2) of WhittinL n and Guttmann for 
x < x *  and x>x* .  Equation (6) implies that the value x , (L)  of x that maximizes 
( ( n  -(n))2)L,x for fixed L>> 1 varies as 

x m ( L )  - x *  - L11". (10) 

We have also considered adsorbing boundaries by assigning a surface fugacity x, 
for each step along the boundary different from the bulk fugacity x for all other steps. 
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Figure 4. Dependence of In C,Cx*,x:) on In L, with L =  . . , 9 ,  for walks between 
opposite comers (upper points) and walks between the midpoints of opposite edges (lower 
points). The filled and empty lower points correspond to even and odd L, respectively. 
The upper and lower broken lines have slopes and A. 

In the half-space geometry a polymer adsorption transition 18-11], corresponding to 
the ‘special’ or ‘multicritical’ transition of semi-infinite magnetic systems with enhanced 
surface couplings [ I t ,  121, takes place at the critical boundary and bulk fugacities x: 
and XI, respectively. For the square lattice x* = p-‘ is given in equation (4). For x: 
we use the estimate 

(11) x: = 0.7738 f 0.0008 

of 191. 

replaced by 
In the multicritical region L >> 1, Ix$ -x,I << x:, Ix* - X I  << x*, equation (6) is 

cL(x,, X )  = L-~:’~[L+’’’” (xT-x,), L”” (x* -x ) l  (12) 

The quantities +sp and q:p are the crossover and corner exponents [8-121, respectively, 
of the special transition. 

For d - 2 the exact value [9,10] of 45p is i, and ?!“=-A has been conjectured 
[9] on the basis of numerical data and conformal invariance. Thus (see equation (8)) 
we use the values 

in making theoretical predictions for d = 2. 
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FigureS. DependenceafIn(n,),.,,:onIn L,with L =  1,2, ... ,9,forwalksbetweenopposite 
corners (upper points, left vertical axis) and walks between the midpoints of opposite 
edges (lower points, right vertical axis). The filled and empty lower points correspond io 
even and odd L, respectively. Both broken lines have slope 3 .  

Equation (12) and its derivatives with respect to x and x, yield 

C,(x:, X*) - L-’:n 

We now compare some of the analytic predictions with numerical data. Whittington 
and Guttmann [l]  tabulated the c , (L)  in equation ( 1 )  for L S 6 .  We have calculated 
C,(x).and C,(x,, x) numerically for L s 9  with the transfer-matrix approach [9 ,  131. 

The results for the total number of walks C L ( l )  (see equation ( 1 ) )  between opposite 
corners and between the midpoints of opposite edges of the L x  L square are given in 
table 1 .  Figure 1 shows CL(l)’/L’ as a function of L-I. The quantity A in equation (2) 
may be estimated by extrapolating t o  L-l=  0. The data are consistent with the same 
value of A for walks between opposite corners and the midpoints of opposite edges. 
This seems reasonable. According to equation (3) the number of steps in an average 
walk is of order Lz. The walk wanders all over the square, and the limit in equation 
(2) is insensitive to the particular endpoints. 

The same value of A for both sets of endpoints is also consistent with the result 

of the transfer-matrix analysis. Here AY’(1) is the largest eigenvalue of the transfer 
matrix with x. = x = 1. Numerical results for AP’( I)’/, are also shown in figure 1. From 
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the three sequences in figure 1 we estimate 

A = 1.743+0.005. (16) 

According to equations (7)-(9), in the large-L limit C,(x*) varies as L-'12 and 
L-5/4 for walks between opposite corners and between the midpoints of opposite edges, 
respectively. For both classes of walks (n)L,r- vanes as L"'. The numerical data, shown 
in figures 2 and 3, are in good agreement with these predictions. 

According to equations (13) and (14), in the presence of critically adsorbing 
boundaries C,(X~, x*) varies as L1'6 for walks between opposite corners and as L"" 
for walks between the midpoints of opposite edges. For both classes of walks (nJL,x:,x. 
varies as L2". The numerical data shown, in figures 4 and 5 ,  is again consistent with 
the predictions, although the convergence of CL(xf ,  x*) for walks between the mid- 
points of opposite edges (lower sequence of points in figure 4) is rather slowt. The 
upper curve lends convincing support to the conjecture ~ i "=  -1/12 of [9]. 

In summary our analytical and numerical results confirm the correspondence [3] 
between the transition in the system of self-avoiding walks, analysed rigorously by 
Whittington and Guttmann [ 11, and the second-order transition in the N-vector model 
of magnetism in the limit N + 0. We have shown that the correspondence is a useful 
starting point for deriving finite-size scaling properties of the system of walks. 

We thank A J Guttmann and S G Whittington for stimulating correspondence. 

Nore added in proof. Some additional related work has come to our attention. Edwards [ I41 has considered 
walks from the centre to the edges of a square containing L' sites of a square lattice. The boundaries of the 
square are rotated 45'with respect IO the square lattice. The total number of such walks increases with L as 
in equation (2),  and the value of A is very close to (probably identical with) the value for our geometry. 
Duplantierand Saleur [I51 also propored equation (96). Duplantierand David [ I 61  have confirmed equation 
(8) for Hamiltonian walks on the Manhattan lattice. 
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